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CNR Partitioning: The channel-to-noise ratio (CNR) is defined as

|2
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where h stands for the Rayleigh fading power gain and follows a unit-mean exponential distribution, NO
is the noise power spectral density, B is the channel bandwidth, and PL(d) = 10(30+20legiod)/10 jg the
path loss between the offloaded UE and the RRH with the distance of d.

Since v is a monotonic function of d, if we quantize the distance interval [0, d,qz], Where dyq, is the
radius of the RRH, to M levels D = {D1, Dy ..., Dy} with Dy = dpe, and Dy = 0, then VD; € D,
the corresponding CNR can be obtained as
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For d > dyq., We quantize it to the Oth level and set Ty = 0. Moreover, we set the |h|?> = E[|h|?] = 1.
In such a way, we successfully obtain the M + 1 CNR states.



Lemma 1: Given a type-0;, RRH, for any state siﬁ’m, s;’j , we have Rfk’m > R;’j if and only if T,i’m > T,i’j .
Proof: First,we prove the sufficiency: if 7, ,im > T2, then Rﬁc’m > R;’j According to the IC
constraints for type-0j with state sZ’j , we have
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which can be transformed to be
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Since T,i’m > T then Rﬁi’m > Rz,’j )

Next, we prove the necessity: if Rﬁc’m > R,if’j , then T,i’m > T, ,ij . Similar to the first case, we start with
the IC constraints for type-0; with state sﬁﬁ’m, and we can obtain
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which can be transformed to be
RL"’" N, R}'C*j N,
L js 2 P —2 5
T, m_ T,z] >c T . (6)
m
lm i, l,m ,J
As RV > R, then T > T, 7.

Lemma 1 indicates that the RRH offering more transmission data should be given with more rewards
by the LPN, and vice versa.
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Lemma 2: (Monotonicity of the Transmission rate for different states)Given a type-0; RRH, if state
lym i, l,m ,J
s, >sp’, then R)" > R;”.

Proof: Considering the IC constraints for type-6; with state sé’m, we have
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Due to the IC constraints for type-0;, with state sf,;’j , we have
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By combining (7) and (8), we can obtain
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Since N; < N;, I, > T';, by reductio, then Ri’m > sz.
Lemma 2 indicates that the RRH at a higher state should be given with more rewards. [ |
Lemma 3: Given a type-0; RRH, if state Sé’m > sZ’j , then U, ,im > U,i’j .

Proof: According to the IC constraints for type-0;, with state sﬁf’m, we have
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Then, we can derive
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Since N; < N;, I'y, > Tj, then Tl’m — 27— > T}7 — ¢2Z =1 Meanwhile, the type-6, RRH at

the higher state sk has larger transition probablhtles to other high states, compared with the state s

Hence, § Z Z Pr(sh ]slm)UZ s Z Z Py (s, Lom \sk’J)U,lC ™ which can also be proved by
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simulation. Comblnmg the above two equalities, we have
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ie, U™ > U
Lemma 3 indicates that the RRH at a higher state will obtain more long-term utility. ]
Lemma 4: Given a state (N;,T'),), if 6 > 0/, then U,i’m > ubm.,
Proof: Considering the IC constraints for the state (N;,T',,,) with different long-term types in (16),



we have
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Moreover, for the same state (N;,T',,), the type-0;, RRH has larger transition probabilities to high

states and has smaller transition probabilities to low states, compared with the type-0;, RRH. Hence,
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ie., U,i’m > ubm.,
Lemma 4 indicates that for the same state, RRHs of a higher long-term type will achieve more utility
from the long-term perspective. ]
Lemma 5 (IRL:Individual Rational Constraint for the lowest type with the lowest state): If only the
01 RRH with state s/,lf’1 among all IR constraints binds, then the other IR constraints will automatically
hold, i.e., IR constraints can be replaced by
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Proof: Lemma 3 and Lemma 4 indicate that U,i’m > Ull’l, Vk e I, | € L, and m € M. Hence,

Ul1 1 =0 can guarantee that all other U,i’m > 0. [ |
Lemma 6 (LDICs:Local Downward Incentive Constraints):

(D (LDICs for Instantaneous States) Given a type-8; RRH: if the LDICs are satisfied for all states
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then IC constraints for a given type will hold for any i < [, 5 < m.
() (LDICs for Long-term Types) Given a state (N}, T',,): if the LDICs are satisfied for all 6y, Vk € IC,
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then IC constraints for a given state will hold for any &' < k.
(IIT) (LDICs for mixed conditions) For different types RRHs at different states: if the LDICs in (16)
and (17) are satisfied, then IC constraints will hold for any k' < k with any i < 1,7 < m.
Proof: Firstly, we prove the LDICs for instantaneous states in (I). Secondly, we prove the LDICs for
log-term types in (II). Finally, we prove the LDICs for mixed conditions in (III).
(D Given a type-0;, RRH, considering the IC constraints for different states, we have
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According to Lemma 1, since sk ""7! > s je RV 5 RI2MT2 By substituting it into
(19), we have
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Combining (18) and (20), we can derive
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Similar to the derivation process of (21), we can obtain the following two inequalities
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Then, by combining (21) (22) and (23), we can rewrite the above three inequalities as
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(1) Given a state (IV;,T',,), considering the IC constraints for different types, we have
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Due to Lemma 4, ;,_; > 0)._», i.c., U,i;"f > U,i;"; . Transforming (26), we have
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Combining (25) and (27), we can derive
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(IIT) Considering the IC constraints for deferent types and states, combing (16) and (17), we have
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Combing (24) with kK = k — 2 and (28), we can get
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Based on the above lemmas, the LPN’s long-term utility maximization problem can be further repre-
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sented by (31). By simplifying the equality constraints in (31), we can conclude
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Note the optimization function in (31) is a Bellman equation of UE’;N 4» and thus finding the optimal
* *
contract item (Rim 1 ,im ) is an MDP. Hence, we adopt a modified value iteration algorithm to solve

the MDP and the details of the algorithm are listed in Algorithm 1.



Algorithm 1 : Find the Optimal Contract Using Value Iteration

1. Given the tolerance £ = 0.01 and set &1 = 1, and initialize R* with R", which satisfies (v) in (31).

2. While 1 > ¢

e Seteg =1
o Set Tl1 = 0, and initialize Uingk =0, Vk,VI,Vm .
e While 2 > ¢ or (iv) and (v) in (31) are not satisfied

— Compute reward Tl’m>k using (33) and (34)
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— Obtain ULPNk = (ng -T,") 40 Z Z By, ( |52m)UL};nN,k'

- F1nd the optimal transmission rate et
R’ = arg maz UlLPNk
k
— Update the parameter e5 by e9 = ||[7]€?Nk - ULPN,CH2
~ Update Up'py,, with Uy = Uppy .

L M
— Compute utility U™ = VI™ 46 50 S0 Py(sh ™ |sk™UL ™.
r=1m'=1
— End "
« Update the parameter € by &1 = IR* — R*||.
o Update R* with R* = R*.
End
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