1

Supplementary Information for "Long-Term Contract Design for Traffic Off-Loading in Heterogeneous Cloud Radio Access Networks"

Min Wang¹², Biling Zhang¹², Jung-Lang Yu³, Zhu Han⁴⁵

¹School of Network Education,

Beijing University of Posts and Telecommunications, Beijing, 100876, China

²The State Key Laboratory of Integrated Services Networks,

Xidian University, P. R. China

Email: {wang_min, bilingzhang}@bupt.edu.cn

³Department of Electrical Engineering,

Fu Jen Catholic University, New Taipei City, 24205, Taiwan

Email: yujl@ee.fju.edu.tw

⁴Department of Electrical and Computer Engineering,

University of Houston, Houston, TX 77004, USA

⁵Department of Computer Science and Engineering,

Kyung Hee University, Seoul, South Korea

Email: zhan2@uh.edu

CNR Partitioning: The channel-to-noise ratio (CNR) is defined as

$$\gamma = \frac{|h|^2}{PL(d)N0B},\tag{1}$$

where h stands for the Rayleigh fading power gain and follows a unit-mean exponential distribution, N0 is the noise power spectral density, B is the channel bandwidth, and $PL(d) = 10^{(30+20log_{10}d)/10}$ is the path loss between the offloaded UE and the RRH with the distance of d.

Since γ is a monotonic function of d, if we quantize the distance interval $[0, d_{max}]$, where d_{max} is the radius of the RRH, to M levels $\mathcal{D} = \{D_1, D_2, \dots, D_M\}$ with $D_1 = d_{max}$ and $D_M = 0$, then $\forall D_i \in \mathcal{D}$, the corresponding CNR can be obtained as

$$\Gamma_i = \frac{|h|^2}{PL(D_i)N0B}. (2)$$

For $d \ge d_{max}$, we quantize it to the 0th level and set $\Gamma_0 = 0$. Moreover, we set the $|h|^2 = E[|h|^2] = 1$. In such a way, we successfully obtain the M+1 CNR states.

Lemma 1: Given a type- θ_k RRH, for any state $\mathbf{s}_k^{l,m}, \mathbf{s}_k^{i,j}$, we have $R_k^{l,m} > R_k^{i,j}$ if and only if $T_k^{l,m} > T_k^{i,j}$. **Proof:** First, we prove the sufficiency: if $T_k^{l,m} > T_k^{i,j}$, then $R_k^{l,m} > R_k^{i,j}$. According to the IC constraints for type- θ_k with state $\mathbf{s}_k^{i,j}$, we have

$$T_k^{i,j} - c \frac{2^{\frac{R_k^{i,j}N_i}{B}} - 1}{\Gamma_j} \ge T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m}N_i}{B}} - 1}{\Gamma_j}, \tag{3}$$

which can be transformed to be

$$c\frac{2^{\frac{R_k^{l,m}N_i}{B}} - 2^{\frac{R_k^{i,j}N_i}{B}}}{\Gamma_j} \ge T_k^{l,m} - T_k^{i,j}. \tag{4}$$

Since $T_k^{l,m} > T_k^{i,j}$, then $R_k^{l,m} > R_k^{i,j}$.

Next, we prove the necessity: if $R_k^{l,m} > R_k^{i,j}$, then $T_k^{l,m} > T_k^{i,j}$. Similar to the first case, we start with the IC constraints for type- θ_k with state $\mathbf{s}_k^{l,m}$, and we can obtain

$$T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m} N_l}{B}} - 1}{\Gamma_m} \ge T_k^{i,j} - c \frac{2^{\frac{R_k^{i,j} N_l}{B}} - 1}{\Gamma_m},\tag{5}$$

which can be transformed to be

$$T_k^{l,m} - T_k^{i,j} \ge c \frac{2^{\frac{R_k^{l,m} N_l}{B}} - 2^{\frac{R_k^{i,j} N_l}{B}}}{\Gamma_m}.$$
 (6)

As $R_k^{l,m} > R_k^{i,j}$, then $T_k^{l,m} > T_k^{i,j}$.

Lemma 1 indicates that the RRH offering more transmission data should be given with more rewards by the LPN, and vice versa.

Lemma 2: (Monotonicity of the Transmission rate for different states) Given a type- θ_k RRH, if state $\mathbf{s}_k^{l,m} > \mathbf{s}_k^{i,j}$, then $R_k^{l,m} > R_k^{i,j}$.

Proof: Considering the IC constraints for type- θ_k with state $\mathbf{s}_k^{l,m}$, we have

$$T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m} N_l}{B}} - 1}{\Gamma_m} \ge T_k^{i,j} - c \frac{2^{\frac{R_k^{i,j} N_l}{B}} - 1}{\Gamma_m}.$$
 (7)

Due to the IC constraints for type- θ_k with state $\mathbf{s}_k^{i,j}$, we have

$$T_k^{i,j} - c \frac{2^{\frac{R_k^{i,j}N_i}{B}} - 1}{\Gamma_j} \ge T_k^{l,m} - c \frac{2^{\frac{R_k^{i,m}N_i}{B}} - 1}{\Gamma_j}.$$
 (8)

By combining (7) and (8), we can obtain

$$\Gamma_m(2^{\frac{R_k^{l,m}N_i}{B}} - 2^{\frac{R_k^{i,j}N_i}{B}}) - \Gamma_j(2^{\frac{R_k^{l,m}N_l}{B}} - 2^{\frac{R_k^{i,j}N_l}{B}}) \ge 0.$$
(9)

Since $N_l < N_i$, $\Gamma_m > \Gamma_j$, by reductio, then $R_k^{l,m} > R_k^{i,j}$.

Lemma 2 indicates that the RRH at a higher state should be given with more rewards.

Lemma 3: Given a type- θ_k RRH, if state $\mathbf{s}_k^{l,m} > \mathbf{s}_k^{i,j}$, then $U_k^{l,m} > U_k^{i,j}$.

Proof: According to the IC constraints for type- θ_k with state $\mathbf{s}_k^{l,m}$, we have

$$T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m} N_l}{B}} - 1}{\Gamma_m} \ge T_k^{i,j} - c \frac{2^{\frac{R_k^{i,j} N_l}{B}} - 1}{\Gamma_m}.$$
 (10)

Then, we can derive

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} \ge T_{k}^{i,j} - c \frac{2^{\frac{R_{k}^{i,j}N_{i}}{B}} - 1}{\Gamma_{j}} + \frac{c}{\Gamma_{m}\Gamma_{j}} \{ (\Gamma_{m} - \Gamma_{j})(2^{\frac{R_{k}^{i,j}N_{i}}{B}} - 1) + \Gamma_{j}(2^{\frac{R_{k}^{i,j}N_{i}}{B}} - 2^{\frac{R_{k}^{i,j}N_{l}}{B}}) \}.$$

$$(11)$$

Since $N_l < N_i$, $\Gamma_m > \Gamma_j$, then $T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m}N_l}{B}} - 1}{\Gamma_m} > T_k^{i,j} - c \frac{2^{\frac{R_k^{l,m}N_i}{B}} - 1}{\Gamma_j}$. Meanwhile, the type- θ_k RRH at the higher state $\mathbf{s}_k^{l,m}$ has larger transition probabilities to other high states, compared with the state $\mathbf{s}_k^{i,j}$. Hence, $\delta \sum_{l'=1}^L \sum_{m'=1}^M P_k(\mathbf{s}_k^{l',m'}|\mathbf{s}_k^{l,m})U_k^{l',m'} > \delta \sum_{l'=1}^L \sum_{m'=1}^M P_k(\mathbf{s}_k^{l',m'}|\mathbf{s}_k^{i,j})U_k^{l',m'}$, which can also be proved by simulation. Combining the above two equalities, we have

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k}^{l',m'}$$

$$> T_{k}^{i,j} - c \frac{2^{\frac{R_{k}^{i,j}N_{i}}{B}} - 1}{\Gamma_{j}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{i,j}) U_{k}^{l',m'},$$
(12)

i.e., $U_k^{l,m} > U_k^{i,j}$.

Lemma 3 indicates that the RRH at a higher state will obtain more long-term utility.

Lemma 4: Given a state (N_l, Γ_m) , if $\theta_k > \theta_{k'}$, then $U_k^{l,m} > U_{k'}^{l,m}$.

Proof: Considering the IC constraints for the state (N_l, Γ_m) with different long-term types in (16),

we have

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k}^{l',m'}$$

$$\geq T_{k'}^{l,m} - c \frac{2^{\frac{R_{k'}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k'}^{l',m'},$$
(13)

Moreover, for the same state (N_l, Γ_m) , the type- $\boldsymbol{\theta}_k$ RRH has larger transition probabilities to high states and has smaller transition probabilities to low states, compared with the type- $\boldsymbol{\theta}_{k'}$ RRH. Hence, $\delta \sum\limits_{l'=1}^L \sum\limits_{m'=1}^M P_k(\mathbf{s}_k^{l',m'}|\mathbf{s}_k^{l,m}) U_{k'}^{l',m'} > \delta \sum\limits_{l'=1}^L \sum\limits_{m'=1}^M P_{k'}(\mathbf{s}_{k'}^{l',m'}|\mathbf{s}_{k'}^{l,m}) U_{k'}^{l',m'}$, which can also be proved by simulation. Therefore, we can derive

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k}^{l',m'}$$

$$> T_{k'}^{l,m} - c \frac{2^{\frac{R_{k'}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k'}(\mathbf{s}_{k'}^{l',m'}|\mathbf{s}_{k'}^{l,m}) U_{k'}^{l',m'},$$
(14)

i.e., $U_k^{l,m} > U_{k'}^{l,m}$.

Lemma 4 indicates that for the same state, RRHs of a higher long-term type will achieve more utility from the long-term perspective.

Lemma 5 (IRL:Individual Rational Constraint for the lowest type with the lowest state): If only the θ_1 RRH with state $\mathbf{s}_k^{1,1}$ among all IR constraints binds, then the other IR constraints will automatically hold, i.e., IR constraints can be replaced by

$$U_1^{1,1} = T_1^{1,1} - c \frac{2^{\frac{R_1^{1,1}N_1}{B}} - 1}{\Gamma_1} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_1(\mathbf{s}_1^{l',m'}|\mathbf{s}_1^{1,1}) U_1^{l',m'} = 0.$$
 (15)

Proof: Lemma 3 and Lemma 4 indicate that $U_k^{l,m} \geq U_1^{1,1}$, $\forall k \in \mathcal{K}, \ l \in \mathcal{L}$, and $m \in \mathcal{M}$. Hence, $U_1^{l,1} = 0$ can guarantee that all other $U_k^{l,m} > 0$.

Lemma 6 (LDICs:Local Downward Incentive Constraints):

(I) (LDICs for Instantaneous States) Given a type- θ_k RRH: if the LDICs are satisfied for all states

 $\mathbf{s}_{k}^{l,m}, \forall l \in \mathcal{L}, m \in \mathcal{M}, \text{ i.e.,}$

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} \ge \max\{T_{k}^{l-1,m-1} - c \frac{2^{\frac{R_{k}^{l-1,m-1}N_{l}}{B}} - 1}{\Gamma_{m}},$$

$$T_{k}^{l-1,m} - c \frac{2^{\frac{R_{k}^{l-1,m}N_{l}}{B}} - 1}{\Gamma_{m}}, T_{k}^{l,m-1} - c \frac{2^{\frac{R_{k}^{l,m-1}N_{l}}{B}} - 1}{\Gamma_{m}}\},$$
(16)

then IC constraints for a given type will hold for any $i \leq l, j \leq m$.

(II) (LDICs for Long-term Types) Given a state (N_l, Γ_m) : if the LDICs are satisfied for all θ_k , $\forall k \in \mathcal{K}$, i.e.,

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k}^{l',m'}$$

$$\geq T_{k-1}^{l,m} - c \frac{2^{\frac{R_{k-1}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k-1}^{l',m'},$$
(17)

then IC constraints for a given state will hold for any $k' \leq k$.

(III) (LDICs for mixed conditions) For different types RRHs at different states: if the LDICs in (16) and (17) are satisfied, then IC constraints will hold for any $k' \le k$ with any $i \le l, j \le m$.

Proof: Firstly, we prove the LDICs for instantaneous states in (I). Secondly, we prove the LDICs for log-term types in (II). Finally, we prove the LDICs for mixed conditions in (III).

(I) Given a type- θ_k RRH, considering the IC constraints for different states, we have

$$T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m} N_l}{B}} - 1}{\Gamma_m} \ge T_k^{l-1,m-1} - c \frac{2^{\frac{R_k^{l-1},m-1}{B}} - 1}{\Gamma_m}, \tag{18}$$

and

$$T_k^{l-1,m-1} - c \frac{2^{\frac{R_k^{l-1,m-1}N_{l-1}}{B}} - 1}{\Gamma_{m-1}} \ge T_k^{l-2,m-2} - c \frac{2^{\frac{R_k^{l-2,m-2}N_{l-1}}{B}} - 1}{\Gamma_{m-1}}.$$
 (19)

According to Lemma 1, since $\mathbf{s}_k^{l-1,m-1} > \mathbf{s}_k^{l-2,m-2}$, ie., $R_k^{l-1,m-1} > R_k^{l-2,m-2}$. By substituting it into (19), we have

$$T_k^{l-1,m-1} - c \frac{2^{\frac{R_k^{l-1,m-1}N_l}{B}} - 1}{\Gamma_m} \ge T_k^{l-2,m-2} - c \frac{2^{\frac{R_k^{l-2,m-2}N_l}{B}} - 1}{\Gamma_m}.$$
 (20)

Combining (18) and (20), we can derive

$$T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m} N_l}{B}} - 1}{\Gamma_m} \ge T_k^{l-2,m-2} - c \frac{2^{\frac{R_k^{l-2,m-2} N_l}{B}} - 1}{\Gamma_m}.$$
 (21)

Similar to the derivation process of (21), we can obtain the following two inequalities

$$T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m} N_l}{B}} - 1}{\Gamma_m} \ge T_k^{l-2,m} - c \frac{2^{\frac{R_k^{l-2,m} N_l}{B}} - 1}{\Gamma_m}, \tag{22}$$

$$T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m}N_l}{B}} - 1}{\Gamma_m} \ge T_k^{l,m-2} - c \frac{2^{\frac{R_k^{l,m-2}N_l}{B}} - 1}{\Gamma_m}$$
 (23)

Then, by combining (21) (22) and (23), we can rewrite the above three inequalities as

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} \ge \max\{T_{k}^{l-2,m-2} - c \frac{2^{\frac{R_{k}^{l-2,m-2}N_{l}}{B}} - 1}{\Gamma_{m}},$$

$$T_{k}^{l-2,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}}, T_{k}^{l,m-2} - c \frac{2^{\frac{R_{k}^{l,m-2}N_{l}}{B}} - 1}{\Gamma_{m}}\}.$$
(24)

(II) Given a state (N_l, Γ_m) , considering the IC constraints for different types, we have

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k}^{l',m'}$$

$$\geq T_{k-1}^{l,m} - c \frac{2^{\frac{R_{k-1}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k-1}^{l',m'}.$$
(25)

and

$$T_{k-1}^{l,m} - c \frac{2^{\frac{R_{k-1}^{l,m}N_l}{B}} - 1}{\Gamma_m} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k-1}(\mathbf{s}_{k-1}^{l',m'} | \mathbf{s}_{k-1}^{l,m}) U_{k-1}^{l',m'}$$

$$\geq T_{k-2}^{l,m} - c \frac{2^{\frac{R_{k-2}^{l,m}N_l}{B}} - 1}{\Gamma_m} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k-1}(\mathbf{s}_{k-1}^{l',m'} | \mathbf{s}_{k-1}^{l,m}) U_{k-2}^{l',m'}.$$
(26)

Due to Lemma 4, $\theta_{k-1} > \theta_{k-2}$, i.e., $U_{k-1}^{l',m'} > U_{k-2}^{l',m'}$. Transforming (26), we have

$$T_{k-1}^{l,m} - c \frac{2^{\frac{R_{k-1}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k-1}^{l',m'}$$

$$\geq T_{k-2}^{l,m} - c \frac{2^{\frac{R_{k-1}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k-2}^{l',m'}.$$
(27)

Combining (25) and (27), we can derive

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'} | \mathbf{s}_{k}^{l,m}) U_{k}^{l',m'}$$

$$\geq T_{k-2}^{l,m} - c \frac{2^{\frac{R_{k-2}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'} | \mathbf{s}_{k}^{l,m}) U_{k-2}^{l',m'}.$$
(28)

(III) Considering the IC constraints for deferent types and states, combing (16) and (17), we have

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k}^{l',m'}$$

$$\geq \max\{T_{k-1}^{l-1,m-1} - c \frac{2^{\frac{R_{k-1}^{l-1,m-1}N_{l}}{B}} - 1}{\Gamma_{m}}, T_{k-1}^{l-1,m} - c \frac{2^{\frac{R_{k-1}^{l-1,m}N_{l}}{B}} - 1}{\Gamma_{m}},$$

$$T_{k-1}^{l,m-1} - c \frac{2^{\frac{R_{k-1}^{l,m-1}N_{l}}{B}} - 1}{\Gamma_{m}}\} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k-1}^{l',m'}.$$

$$(29)$$

Combing (24) with k = k - 2 and (28), we can get

$$T_{k}^{l,m} - c \frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k}^{l',m'}$$

$$\geq \max\{T_{k-2}^{l-2,m-2} - c \frac{2^{\frac{R_{k-2}^{l-2,m-2}N_{l}}{B}} - 1}{\Gamma_{m}}, T_{k-2}^{l-2,m} - c \frac{2^{\frac{R_{k-2}^{l-2,m}N_{l}}{B}} - 1}{\Gamma_{m}},$$

$$T_{k-2}^{l,m-2} - c \frac{2^{\frac{R_{k-2}^{l,m-2}N_{l}}{B}} - 1}{\Gamma_{m}}\} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{k}(\mathbf{s}_{k}^{l',m'}|\mathbf{s}_{k}^{l,m}) U_{k-2}^{l',m'}.$$

$$(30)$$

Based on the above lemmas, the LPN's long-term utility maximization problem can be further repre-

$$\max_{(R_h^{i,j}, T_h^{i,j})} U_{LPN}$$

(i)
$$T_1^{1,1} - c \frac{2^{\frac{R_1^{1,1}N_1}{B}} - 1}{\Gamma_1} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_1(\mathbf{s}_1^{l',m'}|\mathbf{s}_1^{1,1}) U_1^{l',m'} = 0,$$

 $(ii) \ \forall \ k \in \mathcal{K}, \ l \in \mathcal{L}, \ \text{and} \ m \in \mathcal{M},$

$$T_k^{l,m} - c\frac{2^{\frac{R_k^{l,m}N_l}{B}} - 1}{\Gamma_m} = \max\{T_k^{l-1,m-1} - c\frac{2^{\frac{R_k^{l-1,m-1}N_l}{B}} - 1}{\Gamma_m}, \ T_k^{l-1,m} - c\frac{2^{\frac{R_k^{l-1,m}N_l}{B}} - 1}{\Gamma_m}, \ T_k^{l,m-1} - c\frac{2^{\frac{R_k^{l,m-1}N_l}{B}} - 1}{\Gamma_m}\},$$

(iii) Given a state $(N_l, \Gamma_m), \forall k \in \mathcal{K}$

$$T_k^{l,m} - c \frac{2^{\frac{R_k^{l,m}N_l}{B}} - 1}{\Gamma_m} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_k(\mathbf{s}_k^{l',m'}|\mathbf{s}_k^{l,m}) U_k^{l',m'} = T_{k-1}^{l,m} - c \frac{2^{\frac{R_{k-1}^{l,m}N_l}{B}} - 1}{\Gamma_m} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_k(\mathbf{s}_k^{l',m'}|\mathbf{s}_k^{l,m}) U_{k-1}^{l',m'},$$

 $(iv) \ \forall \ l \in \mathcal{L}, \ \text{and} \ m \in \mathcal{M}, \ U_1^{l,m} < U_2^{l,m} < \dots < U_K^{l,m},$

$$(v) \ \forall \ k \in \mathcal{K}, \ l \in \mathcal{L}, \ \text{and} \ \ m \in \mathcal{M}, \ R_k^{1,m} < R_k^{2,m} < \dots < R_k^{L,m}, \ \text{and} \ R_k^{l,1} < R_k^{l,2} < \dots < R_k^{l,M}.$$
 (31)

sented by (31). By simplifying the equality constraints in (31), we can conclude

$$T_1^{1,1} = c \frac{2^{\frac{R_1^{1,1}N_1}{B}} - 1}{\Gamma_1} - \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_1(\mathbf{s}_1^{l',m'}|\mathbf{s}_1^{1,1}) U_1^{l',m'}, \tag{32}$$

$$T_{1}^{l,m} = c\frac{2^{\frac{R_{k}^{l,m}N_{l}}{B}} - 1}{\Gamma_{m}} + max\{T_{1}^{l-1,m-1} - c\frac{2^{\frac{R_{1}^{l-1,m-1}N_{l}}{B}} - 1}{\Gamma_{m}}, T_{1}^{l-1,m} - c\frac{2^{\frac{R_{1}^{l-1,m}N_{l}}{B}} - 1}{\Gamma_{m}}, T_{1}^{l-1,m} - c\frac{2^{\frac{R_{1}^{l-1,m}N_{l}}{B}} - 1}{\Gamma_{m}}, T_{1}^{l-1,m-1} - c\frac{2^{\frac{R_{1}^{l-1,m-1}N_{l}}{B}} - 1}{\Gamma_{m}}, T_{1}^{l-1,m-1} - c\frac{2^{\frac{R_{1}^{l-1,m-1$$

$$T_{k}^{l,m} = T_{1}^{l,m} + \sum_{i=1}^{k-1} \left\{ c \frac{2^{\frac{R_{i+1}^{l,m}N_{l}}{B}} - 2^{\frac{R_{i}^{l,m}N_{l}}{B}}}{\Gamma_{m}} - \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_{i+1}(\mathbf{s}_{i+1}^{l',m'}|\mathbf{s}_{i+1}^{l,m}) (U_{i+1}^{l',m'} - U_{i}^{l',m'}) \right\}.$$
(34)

Note the optimization function in (31) is a Bellman equation of $U_{LPN,k}^{l,m}$, and thus finding the optimal contract item $(R_k^{l,m^*},T_k^{l,m^*})$ is an MDP. Hence, we adopt a modified value iteration algorithm to solve the MDP and the details of the algorithm are listed in Algorithm 1.

Algorithm 1: Find the Optimal Contract Using Value Iteration

- 1. Given the tolerance $\varepsilon = 0.01$ and set $\varepsilon_1 = 1$, and initialize \mathbf{R}^* with \mathbf{R}^0 , which satisfies (v) in (31).
- 2. While $\varepsilon_1 > \varepsilon$

 - Set $\varepsilon_2=1$ Set $T_1^{1,1}=0$, and initialize $U_{LPN,k}^{l,m}=0, \ \forall k, \forall l, \forall m$.
 While $\varepsilon_2>\varepsilon$ or (iv) and (v) in (31) are not satisfied
 - - Compute reward T_k^{l,m^*} using (33) and (34).

- Compute reward
$$T_k^{l,m}$$
 using (33) and (34).

- Obtain $\hat{U}_{LPN,k}^{l,m} = (gR_k^{l,m} - T_k^{l,m}) + \delta \sum_{l'=1}^L \sum_{m'=1}^M P_k(\mathbf{s}_k^{l',m'}|\mathbf{s}_k^{l,m}) \hat{U}_{LPN,k}^{l',m'}$.

- Find the optimal transmission rate $\hat{R}_k^{l,m^*} = \arg\max_{R_k^{l,m}} \hat{U}_{LPN,k}^{l,m}$.

- Update the parameter ε_2 by $\varepsilon_2=||\hat{U}_{LPN,k}^{l,m}-U_{LPN,k}^{l,m}-U_{LPN,k}^{l,m}||^2$.
 Update $U_{LPN,k}^{l,m}$ with $U_{LPN,k}^{l,m}=\hat{U}_{LPN,k}^{l,m}$.
- Compute utility $U_k^{l,m} = V_k^{l,m} + \delta \sum_{l'=1}^{L} \sum_{m'=1}^{M} P_k(\mathbf{s}_k^{l',m'}|\mathbf{s}_k^{l,m}) U_k^{l',m'}$.
- End
- Update the parameter ε_1 by $\varepsilon_1 = ||\hat{\mathbf{R}}^* \mathbf{R}^*||^2$.
- Update \mathbf{R}^* with $\mathbf{R}^* = \hat{\mathbf{R}}^*$.

End